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ABSTRACT: Test Case Optimization and Prioritization techniques have always had an inevitable 
role in Regression Testing and related activities. Regression testing of an application even of 
medium complexity requires repeated execution of Test Cases for every minor change in the 
requirements. In Agile environments, where the software requirements are volatile, even a trivial 
change in the application increases the size of the existing Test suite. Prioritizing test cases in a 
test suite acuminates the Testing process, by detecting faults early in the process. Here, the Test 
cases are prioritized by a rank based method; depending on the how early they are unveiled during 
the Testing process. This ranking is obtained using Swarm based intelligence methods. The base 
algorithm uses the group foraging behavior of Escherichia coli (E-Coli) bacteria present in the 
human intestine. This social foraging behaviour of E.coli bacteria has been used to solve complex 
optimization problems. The Bacterial Foraging optimization (BFOA) algorithm prioritizes the Test 
cases, resulting in an optimized Test suite that minimizes the overall number of Test cases and 
eliminating the test cases that are obsolete. In the proposed system, the nodes that represent the 
main functionalities are identified using the social foraging behavior of E.Coli. The objectives in 
this research are maximizing the statement coverage and fault coverage for getting a test suite of 
prioritized test cases that reveals the bug at the initial stage of testing itself. The swarm intelligence 
based optimization approach is used in this paper to attain the optimal results in test case 
prioritization by identifying the critical areas of the Software Under Test (SUT) that requires code 
and fault coverage. In this research, based on the BFO approach, an optimal result is obtained 
when compared to other Swarm Intelligence Algorithms. 
 
KEYWORDS: Bacterial Foraging optimization (BFOA), Test cases, AFID, statement coverage 
and fault coverage 
 
INTRODUCTION  
 
Software bugs are almost present in most of the software modules which are being developed by 
the software developers as the complexity of software is usually intractable and software 
developers have only restricted potential to handle complexity. Identifying the design defects in 
software is very tough due to complexity. Since software is not continuous, testing boundary 
values are inadequate method to assure accuracy. Thus, the entire values are required to be 
evaluated and confirmed, but this entire testing is infeasible [1]. 
 
The maintenance phase of software requires efficient regression testing process. It is necessary to 
retest the existing test suite whenever any alterations are done to the software. Regression testing 
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is the phenomenon of re-running the test cases from the test suite to assure error free modified 
software. It guarantees that modifications in the software have not influenced functional 
characteristics of software [2].  
 
But, software developers often have time and budget limits in running all the test cases within the 
particular constraints. Thus, this approach is quite expensive and time consuming. Therefore, in 
order to deal with the problem of time and budget constraint, test case minimization, selection and 
prioritization techniques [3] have been used for regression testing for effective cost reduction in 
regression testing.  
 
This research work mainly focuses on the test case prioritization. In test case prioritization, the test 
cases are ordered priority-wise such as highest priority test case is to be executed first and so on, 
based on the objectives such as raise fault detection rate, maximize code coverage.  Prioritization 
facilitates software developers to reduce the cost and time through its prioritized test cases [4, 5]. 
 
Test case prioritization looks for identifying potential ordering of test case execution for regression 
testing. The efficiency of the Test case prioritization lies in revealing the faults at the earliest [6]. 
But, the nature and locality of actual faults are usually not known in advance and thus, test case 
prioritization approach have to largely depend on available substitutes for prioritization criteria. 
Structural coverage, requirement priority and mutation score have been used in the literature as 
criteria for performing prioritization [7, 8, 9]. But, there is no single prioritization criterion whose 
results dominate the others. 
 
In testing, multiple variables are considered to produce the efficient number of test cases and to 
result in the optimal result. Several numbers of test cases will be formed through exhaustive 
testing [10]. But, all the test cases cannot be considered and only a few test cases will be 
performing well if implemented in testing the software. This is the main issue considered in this 
paper. This problem necessitates obtaining the comparable results using reduced and optimal set of 
test cases. After finding the optimal set of test cases, it has to be prioritized based on the statement 
coverage and fault coverage in particular time. 
 
The test cases which are prioritized based on the statements covered and faults covered. The 
prioritization will be based on certain fitness value [11]. Furthermore, through polynomial 
bounded computation, most of the complex multivariable optimization problems [12] cannot be 
solved accurately. This formulation induces to develop a novel approach through search based 
intelligent selection and prioritization of test case.  
 
Optimization techniques have been effectively used in test case generation and prioritization in 
recent years. Although, a number of optimization techniques had been proposed and good results 
had been obtained, problems such as complexity in dynamic data sets and higher time 
consumption for convergence always exists in the traditional optimization techniques. Thus, still 
there is always a hope for betterment of the optimization results. This research work focuses on 
using the appropriate optimization technique for the application of test case prioritization which 
provides the optimal best results.  
 
Thus, swarm intelligence based technique has been used in this work for test case prioritization. A 
number swarm intelligence approaches has been observed to produce significant results in terms of 
its accuracy, convergence behavior, time taken etc. A recent and efficient swarm intelligence 
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approach called Bacterial Foraging Optimization Algorithm (BFOA) has been used in this work 
which is observed to be better than PSO and GA in terms of convergence, robustness and precision 
for getting the optimal test case prioritization results. 
 
LITERATURE SURVEY 
 
A number of research works have been proposed in the literature for test case selection and 
prioritization based on optimization process. Some of the well known techniques are discussed 
here.  The regression testing has been solved using optimization approaches like Genetic 
Algorithm (GA) [13], Ant Colony Optimization (ACO) [14], etc. 
 
In [15], Hybrid Genetic Algorithm (HGA) is proposed for improving the quality of test cases. This 
improvement can be achieved by analyzing both mutation score and path coverage of each test 
case. Effective test cases have been selected by this approach with higher mutation score and path 
coverage from a near infinite number of test cases. Hence, the final test set size is reduced which 
in turn reduces the total time needed in testing activity. In the proposed framework, two 
improvement heuristics namely RemoveTop and LocalBest are introduced to achieve near global 
optimal solution.  
 
Yu-Chi Huang et al has presented a cost cognizant test case prioritization approach with the 
application of previous data and GA [16]. But the main drawback of this approach is that it does 
not consider the test cases similarity. Ciyong Chen et al presented a novel technique called EPDG-
GA which uses the Edge Partitions Dominator Graph (EPDG) and Genetic Algorithm (GA) for 
branch coverage testing [17]. 
 
In [18], a strategy for GUI functional testing using Simplified Swarm Optimization (SSO) is 
proposed. The SSO is used to generate an optimized test suite with the help of Event-Interaction 
Graph (EIG). The proposed strategy also manages and repairs the test suites by deleting the 
unnecessary event sequences that are not applicable. The generation algorithm based on SSO has 
proved its effectiveness by evaluating it against other algorithms. In addition, the strategy is 
applied on a case study and proved its applicability in reality. 
 
Due to the drawbacks of the above said optimization algorithms, an efficient optimization 
algorithm which provides best convergence rate, less complexity, higher accuracy is required to 
solve the test case prioritization problem. Hence this research work uses Bacterial Foraging 
Optimization Algorithm (BFOA) to attain the optimal results.  
 
PROPOSED METHODOLOGY 
 
This research work uses an efficient Bacterial Foraging Optimization Algorithm (BFOA) for the 
formulation of test case prioritization and minimization. In this proposed approach, each test case 
would denote a population source and the aim of the approach would be to determine best sources 
i.e. test cases with maximum statement coverage and maximum fault coverage. The main aim of 
the proposed approach is to determine the optimal number of test cases with higher statement 
coverage and fault coverage. In order to handle this issue, BFOA approach gather the test cases 
and then calibrate the fitness function which is in-turn used to identify the optimal test cases with 
maximum statement coverage and fault coverage.  
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On choosing the population randomly from a given issue, fitness function is assigned based on the 
position of the BFOA algorithm. In this process of test case prioritization and minimization, the 
position of foraging behaviour of E.coli bacteria is considered as number of statements and faults 
covered by those bacteria. The regression testing mainly focuses on total statement and fault 
covered in less time. The stopping criterion is to be decide, on the basis of which BFOA 
optimization algorithm will end.  
 
This research work proposes that the optimized test suite produced by the algorithm will comprises 
of all possible statements and faults in the program. The program is given to the Test Case 
optimization tool. BFOA is applied to produce an Optimal Test suite by generating optimal test 
data which would have higher statement and path coverage. In BFOA, group foraging strategy of a 
swarm of E.coli bacteria is regarded as search agent for the execution state of the Software Under 
Test (SUT) and also initializes the test cases by defining the parameter with the initial test data 
with the aid of corresponding partitioning and boundary value analysis [19]. The search agent 
computes the fitness based on the bacterium of each test node by estimating the statement and fault 
coverage. This process is repeated until an executable state of SUT is determined. The BFOA 
optimization can be distributed in the objective function definite space.  In order to find the 
minimum of J(θ)where θ ∈ ℜ (i.e. θ is a p-dimensional vector of real numbers), and there areno 
measurements or an analytical description of the gradient ∇J(θ	). BFOA mimics the four principal 
mechanisms observed in a real bacterial system: chemotaxis, swarming, reproduction, and 
elimination-dispersal to solve this non-gradient optimization problem. A virtual bacterium is 
actually one trial solution (may be called a search-agent) that moves on the functional surface to 
locate the global optimum. Ultimately, a number of bacteria returns collects at the multiple optima 
of the given objective function. If the condition is not met, then the new set of test data is formed 
from the abandoned repository and again the same process is repeated.  
 
In order to implement any algorithm, the algorithm must be converted into the pseudo code before 
programmatically developing an application is as follows. 
 
Bacterial Forging Optimization 
Bacterial foraging optimization algorithm (BFOA) is an effective global optimization algorithm 
for solving distributed optimization problems. Bacteria Foraging Optimization Algorithm (BFOA), 
proposed in [20], is a new comer to the family of nature-inspired optimization algorithms. BFOA 
is based on the social foraging behavior of Escherichia coli. BFOA is observed to be very efficient 
in handling real-world optimization problems in various engineering domains. The fundamental 
biological concept in the foraging strategy of E.coli is followed and used for the optimization 
algorithm. Bacteria search for nutrients in a manner to maximize energy obtained per unit time. 
Individual bacterium also communicates with others by sending signals. A bacterium takes 
foraging decisions after considering two previous factors.  
 
The main notion of BFOA is based on the fact that natural selection removes animal with 
ineffective foraging strategies and favor those having efficient foraging approaches. After 
particular number of iterations, poor foraging approaches are either eliminated. The foraging 
strategy of BFOA is governed by four processes, namely, chemotaxis, swarming, reproduction, 
and elimination and dispersal. 
 
Since its inception, BFOA has drawn the attention of researchers from diverse fields of knowledge 
especially due to its biological motivation and graceful structure. Researchers are trying to 



214 
 

hybridize BFOA with different other algorithms in order to explore its local and global search 
properties separately. It has already been applied to many real world problems and proved its 
effectiveness over many variants of GA and PSO. Mathematical modeling, adaptation, and 
modification of the algorithm might be a major part of the research on BFOA in future. 
 
Bacteria Foraging Optimization Working Principle 
During foraging of the real bacteria, locomotion is achieved by a set of tensile flagella. Flagella 
help an E.coli bacterium to tumble or swim, which are two basic operations performed by a 
bacterium at the time of foraging [21]. When they rotate the flagella in the clockwise direction, 
each flagellum pulls on the cell. That results in the moving of flagella independently and finally 
the bacterium tumbles with lesser number of tumbling whereas in a harmful place it tumbles 
frequently to find a nutrient gradient. Moving the flagella in the counterclockwise direction helps 
the bacterium to swim at a very fast rate. In the above-mentioned algorithm the bacteria undergoes 
chemotaxis, where they like to move towards a nutrient gradient and avoid noxious environment. 
Generally the bacteria move for a longer distance in a friendly environment. 
 
When they get food in sufficient, they are increased in length and in presence of suitable 
temperature they break in the middle to from an exact replica of itself. This phenomenon inspired 
Passino to introduce an event of reproduction in BFOA. Due to the occurrence of environmental 
changes, the chemotactic progress may be destroyed and a group of bacteria may move to some 
other places or some other may be introduced in the swarm of concern. This constitutes the event 
of elimination-dispersal in the real bacterial population, where all the bacteria in a region are killed 
or a group is dispersed into a new part of the environment. 
 
In order to find the minimum of J(θ) where θ ∈ ℜ (i.e. θ  is a p-dimensional vector of real 
numbers), and there areno measurements or an analytical description of the gradient ∇J(θ	). BFOA 
mimics the four principal mechanisms observed in a real bacterial system: chemotaxis, swarming, 
reproduction, and elimination-dispersal to solve this non-gradient optimization problem. A virtual 
bacterium is actually one trial solution (may be called a search-agent) that moves on the functional 
surface to locate the global optimum.  
 
A chemotactic step is defined to be a tumble followed by a tumble or a tumble followed by a run. 
Let j be the index for the chemotactic step. Let k be the index for the reproduction step. Let l	be the 
index of the elimination-dispersal event. Also let 

푝:  Dimension of the search space, 
푆:  Total number of bacteria in the population, 
푁푐 ∶  The number of chemotactic steps, 
푁푠:  The swimming length. 
푁푟푒 ∶  The number of reproduction steps, 
푁푒푑 ∶  The number of elimination-dispersal events, 
푃푒푑 ∶  Elimination-dispersal probability, 
퐶	(푖):  The size of the step taken in the random direction specified by the tumble. 

Let P(	j, k, l) = θ (	j, k, l) i = 1,2, . . . , S}	represent the position of each member in the population 
of the S bacteria at the j-th chemotactic step, k-th reproduction step, and l-th elimination-dispersal 
event. Here, let J	(i, j, k, l) denote the cost at the location of the i-th bacterium θ 	(	j, k, l) ∈ ℜ  
(sometimes, the indices are dropped and refer to the i-th bacterium position as i q).  
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It is to be observed that J isreferred as a “cost” (using terminology from optimization theory) and 
as being a nutrient surface (in reference to the biological connections). For actual bacterial 
populations, S can be very large (e.g. S	 = 109 ), but p	 = 	3 . In the present work, smaller 
population sizes are used and moreover, it is kept fixed. BFOA, however, allows p	 > 	3 so that, 
the method can be applied to higher dimensional optimization problems. The four essential steps in 
BFO are discussed below. 
 
Chemotaxis: This process simulates the movement of an E.coli cell through swimming and 
tumbling via flagella. Biologically an E.coli bacterium can move in two different ways. It can 
swim for a period of time in the same direction or it may tumble, and alternate between these two 
modes of operation for the entire lifetime. Suppose θ 	(	j, k, l) represents ith bacterium at jth 
chemotactic, kth reproductive and lth elimination-dispersal step. C(i) is the size of the step taken in 
the random direction specified by the tumble (run length unit). Then in computational chemotaxis 
the movement of the bacterium may be represented by 
 

휃 (푗 + 1, 푘, 푙) = 휃 (푗,푘, 푙) + 퐶(푖)
∆(푖)

∆ (푖)∆(푖)
 (1) 

 
Where ∆ indicates a vector in the random direction whose elements lie  
in [-1, 1]. 
 
Swarming: An interesting group behavior has been observed for several motile species of bacteria 
including E.coli and S. typhimurium, where intricate and stable spatio-temporal patterns (swarms) 
are formed in semisolid nutrient medium. A group of E.coli cells arrange themselves in a traveling 
ring by moving up the nutrient gradient when placed amidst a semisolid matrix with a single 
nutrient chemo-effecter. The cells when stimulated by a high level of succinate, release an 
attractant aspertate, which helps them to aggregate into groups and thus move as concentric 
patterns of swarms with high bacterial density. The cell-to-cell signaling in E. coli swarm may be 
represented by the following function. 
 

퐽 휃,푃(푗, 푘, 푙) = 퐽 휃, 휃 , (푗, 푘, 푙)  (2) 

[−푑 exp	(−푤 (휃 − 휃 ) )]

+ ℎ exp	(−푤 (휃 − 휃 )  

(3) 

 
where J (θ	, P(	j, k, l))	is the objective function value to be added to the actual objective to present 
a time varying objective function, S is the total number of bacteria, p is the number of variables to 
be optimized, which are present in each bacterium and θ = 	 θ , θ , … . , θ is a point in the p-
dimensional search domain. d 	, w 	, h 	, w 	are different coefficients 
that should be chosen properly. 
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Reproduction: The least healthy bacteria eventually die while each of the healthier bacteria (those 
yielding lower value of the objective function) asexually split into two bacteria, which are then 
placed in the same location. This keeps the swarm size constant.  
 
Elimination and Dispersal: Gradual or sudden changes in the local environment where a bacterium 
population lives may occur due to various reasons e.g. a significant local rise of temperature may 
kill a group of bacteria that are currently in a region with a high concentration of nutrient 
gradients. Events can take place in such a fashion that all the bacteria in a region are killed or a 
group is dispersed into a new location. To simulate this phenomenon in BFOA some bacteria are 
liquidated at random with a very small probability while the new replacements are randomly 
initialized over the search space. 
 
The pseudo-code of the complete algorithm is presented below: 
The BF algorithm [22] is modified so as to speed up the convergence. The modifications are 
discussed below. 

1. In [22], the average value of all the chemotactic  
cost functions is taken to decide the health of specific bacteria in that generation, before 
sorting is performed for reproduction. In this research work, instead of the average value, 
the minimum value of all the chemotactic cost functions is maintained for deciding the 
significance of the bacteria’s health. This speeds up the convergence, as in the average 
scheme, it may not retain the fittest bacterium for the subsequent generation. On the other 
side, the global minimum bacterium among all chemotactic stages passes onto the 
following stage. 

2. For swarming, the distances of all the bacteria in a new chemotactic phase is computed 
from the global optimum bacterium until that point and not the distances of each 
bacterium from the rest of the others, as given in [23].  
 

Proposed BFO Algorithm for Test case Minimization and prioritization 
The following variables are initialized. 

 Number of bacteria (S) to be used in the search. 
 Number of parameters (p) to be optimized. 
 Swimming length. 
 The number of iterations in a chemotactic loop. 
 The number of reproduction. 
 The number of elimination and dispersal events. 
 The probability of elimination and dispersal. 

 
This section models the bacterial population chemotaxis, swarming, reproduction, and elimination 
and dispersal. (initially, j = k = l = 0). For the algorithm updating, θ  automatically results in 
updating of “p”. 
Elimination-dispersal loop: l = l + 1, Reproduction loop: k = k + 1, Chemotaxis loop: j = j + 1 

a) For i = 1,2, … S, compute cost function value for each bacterium i as follows 
 Compute value of cost function J(I,j,k,l). Let 

J (i, j, k, l) = J(i, j, k, l) + J θ 	(j, k, l , P(j, k, l)). P(j, k, l)		is the location of bacterium 
corresponding to the global minimum cost function out of all the generations and 
chemotactic loops until that point 
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 Let J = J (i, j, k, l) to save this value as a better cost may be found via a run. 
 End of For Loop 

b) For i = 1, 2, … , S,	take the tumbling/swimming decision 
 Tumble: Generate a random vector  
 Move: let θ (j + 1, k + l) = θ (j, k, l) + C(i) ∆( )

∆ ( )∆( )
             (4) 

Fixed step size in the direction of tumble for bacterium i is considered. 
 Consider J(i,j+1,k,l) and then let J (i, j + 1, k, l) = J(i, j + 1, k, l) + j (θ (j +

1, k, l), P(j + 1, k, l)) 
 Swim  

i) Let m	 = 0; (counter for swim length)  
ii) While m < N  ((have not climbed down too long) 

 Let m = m + 1 
 If J (i, j + 1, k, l) < J 	(if doing better), let J 	 = J (i, j + 1, k, l) and 

θ (j + 1, k + l) = θ (j, k, l) + C(i) ∆( )

∆ ( )∆( )
                          (5) 

Use this θ (j + 1, k + l) to compare the new J(i, j + 1, k, l) 
 Else let m = 	N . This is the end of the “While” statement 

c) Go to next bacterium (i + 1) if i	 ≠ S (i.e., go to “b”) to process the next bacterium. 
4) if j < N , go to step 3. In this case, continue chemotaxis since the life of the bacteria is not over. 
5) Reproduction  

a)  For the given k and	l and for each i	 = 1, 2, … S, let J = min
j ∈ {1 … N {J (i, j, k, l)} be the 

health of the J  (Higher cost means lower health). 
b) The S = S/2 bacteria with highest J  values die and other S  bacteria with the best value 

split ( and the copies that are made are placed at the same location as their parent)  
6) If k < N , go to ; in this case, the number of specified reproduction steps is not been reached 
and thus, the next generation in the chemotactic loop is initiated. 
7) Elimination-dispersal: For i = 1,2, … S,  with probability P , removes and disperses each 
bacterium (this keeps the number of bacteria in the population constant). For this process, if one 
eliminates a bacterium, it is simply dispersed to a random location on the optimization domain. 
The Proposed BFOA Algorithm Flow Chart is shown in figure 1. 
 
Problem Formulation 
The test case prioritization technique’s basic evaluation is to have maximum number of faults 
covered and statement covered with minimum number of test cases required. In this approach, the 
execution time of every test case is also analyzed. The fault measuring technique used is fault 
coverage based testing technique. In this example, there are test cases forming Test Suite (TS) = 
{T1, T2, T3, T4, T5, T6, T7, T8} and the faults covered by those test cases are represented as 
Faults Covered (FC) = {F1, F2, F3, F4, F5, F6}. Similarly the statements covered by the test cases 
are denoted as Statements Covered (SC) = {S1, S2, S3, S4, S5 }.  
 
Table 1 and 2 clearly shows the Test cases with the faults and statements covered in particular 
execution time. 
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Figure 1: Proposed BFOA Algorithm Flow Chart 
 

Table 1. Test Case With Number Of Faults Covered And Execution Time Taken 
Test 
Case/Faults 

F1 F2 F3 F4 F5 F6 No. of 
Faults 
Covered 

Execution 
Time 

T1 x  x x x  4 9 
T2  x x x x  4 9 
T3 x   x  x 3 10 
T4 x  x  x x 4 14 
T5 x x  x x x 5 10 
T6 x  x   x 3 9 
T7  x x x x  4 8 
T8 x  x   x 3 5 

 
PERFORMANCE EVALUATION  
 
This section compares the performance of the proposed BFOA approach with the other 
optimization approaches such as PSO, ABC and PSABC in terms of percentage of statement 
coverage and fault coverage. It is clearly observed from the figure 2 that the proposed test case 
prioritization and minimization approach using BFOA provides better statement coverage when 
compared with ABC, PSO and PSABC optimization approaches.  

Initialize the test cases with 
defining a parameter 

Elimination of dispersal loop 

Chemotaxis loop 

Reproduction loop 

If the number 
of chemotactic 
steps range< 
cost function 

Go to Chemotaxis loop, continue 
chemotaxis since the life of the 

bacteria is not over 

Reproduction loop 

Optimal prioritized test cases  If Reproduction 
loop< The number of 

reproduction steps 

Yes 

No 

No Yes 
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Table 2. Test Cases With Number Of Statements Covered And Execution Time Taken 
Test 
Case/Faults 

S1 S2 S3 S4 S5 No. of 
Faults 
Covered 

Execution 
Time 

T1  x  x x 3 8 
T2 x  x x x 4 5 
T3 x x  x  3 9 
T4  x x  x 3 6 
T5  x x x x 4 11 
T6 x   x  2 5 
T7 x x x  x 4 7 
T8 x   x  2 4 

 

 
 

 Figure 2: No. of Cycles Vs Statement Coverage (%) Comparison 
 
Figure 3 shows the fault coverage comparison in percentage for the approaches such as PSO, 
ABC, PSABC and BFOA. The proposed approach outperforms the other two approaches in terms 
of the fault coverage. 
 
Figure 4 shows the graphical representation of No of runs vs. Paths. The proposed BFO algorithm 
provides better performance in terms of runs. 
 
Figure 5 shows the graphical representation of No of cycles vs. percentage covered. The proposed 
BFO algorithm provides better performance in terms of path coverage.  
 
It can be observed from the graphical representation that the test cases are prioritized based on 
higher statement coverage and fault coverage are selected as the optimal test cases. 
 
APFS Metric 
This performance of the proposed BFOA based Test Case Prioritization has been represented 
through APFD representation. The APFD Percentage as calculated by concerning test suite 
selected from above program solution. 
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Figure 3: No. of Cycles Vs Fault Coverage (%) Comparison 

 

 
 

Figure 4: No of runs vs. Paths 
 

 
 

Figure 5: No of cycles vs. percentage covered 
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To quantify the goal of increasing a subset of the test suite's rate of fault detection, i use a metric 
called APFD that measures the average rate of fault detection per percentage of test suite 
execution. The APFD is calculated by taking the weighted average of the number of faults 
detected during the run of the test suite. APFD can be calculated using a notation:  

 
퐴푃퐹퐷 = 1− ⋯ +            (6) 

 
 where T -> The test suite under evaluation 
m -> the number of faults contained in the program under test P  
 n -> The total number of test cases and  
TFi -> The position of the first test in T that exposes fault i. 
So as the formula for APFD shows that calculating APFD is only possible when prior knowledge 
of faults is available. APFD calculations therefore are only used for evaluation. 
 
CONCLUSION 
 
Test case Prioritization has become an active area of research in the field of software testing. 
Innumerable research works have already been proposed in the literature for Test Case 
prioritization. Regression Testing is a time consuming and inestimable process and the main 
objective of a good Test plan would be attaining complete test coverage with minimum cost and 
time. A unique test case prioritization method is proposed here, considering the multiobjective 
criteria.  The objectives considered in this research work are statement coverage and fault coverage 
in minimum execution time. This research work substantiates the proposed methodology by 
attaining test case prioritization whose results are extensively implemented and tested using 
BFOA. The performance of the approach is compared with other optimization approaches of Test 
Cases using Swarm Intelligence Algorithms, primarily with the Glowworm Swarm Algorithm 
(GSO). It is observed from the experimental results that the proposed BFOA based test case 
prioritization approach provides better results when compared with other methods. Further 
research work may focus on analyzing convergence rates by applying variants of the 
aforementioned algorithms and developing novel algorithms with higher efficacy. 
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