

TEST CASE OPTIMIZATION AND PRIORITIZATION IN REGRESSION

TESTING USING BACTERIAL FORAGING OPTIMIZATION (BFO)
ALGORITHM

ABRAHAM KIRAN JOSEPH

Research Scholar, Dr.GRD College of Science, Coimbatore
Email: abrahamkiran@ymail.com

G.RADHAMANI

Director, School of IT & Sciences, Dr.GRD College of Science, Coimbatore

ABSTRACT: Test Case Optimization and Prioritization techniques have always had an inevitable
role in Regression Testing and related activities. Regression testing of an application even of
medium complexity requires repeated execution of Test Cases for every minor change in the
requirements. In Agile environments, where the software requirements are volatile, even a trivial
change in the application increases the size of the existing Test suite. Prioritizing test cases in a
test suite acuminates the Testing process, by detecting faults early in the process. Here, the Test
cases are prioritized by a rank based method; depending on the how early they are unveiled during
the Testing process. This ranking is obtained using Swarm based intelligence methods. The base
algorithm uses the group foraging behavior of Escherichia coli (E-Coli) bacteria present in the
human intestine. This social foraging behaviour of E.coli bacteria has been used to solve complex
optimization problems. The Bacterial Foraging optimization (BFOA) algorithm prioritizes the Test
cases, resulting in an optimized Test suite that minimizes the overall number of Test cases and
eliminating the test cases that are obsolete. In the proposed system, the nodes that represent the
main functionalities are identified using the social foraging behavior of E.Coli. The objectives in
this research are maximizing the statement coverage and fault coverage for getting a test suite of
prioritized test cases that reveals the bug at the initial stage of testing itself. The swarm intelligence
based optimization approach is used in this paper to attain the optimal results in test case
prioritization by identifying the critical areas of the Software Under Test (SUT) that requires code
and fault coverage. In this research, based on the BFO approach, an optimal result is obtained
when compared to other Swarm Intelligence Algorithms.

KEYWORDS: Bacterial Foraging optimization (BFOA), Test cases, AFID, statement coverage
and fault coverage

INTRODUCTION

Software bugs are almost present in most of the software modules which are being developed by
the software developers as the complexity of software is usually intractable and software
developers have only restricted potential to handle complexity. Identifying the design defects in
software is very tough due to complexity. Since software is not continuous, testing boundary
values are inadequate method to assure accuracy. Thus, the entire values are required to be
evaluated and confirmed, but this entire testing is infeasible [1].

The maintenance phase of software requires efficient regression testing process. It is necessary to
retest the existing test suite whenever any alterations are done to the software. Regression testing

211

is the phenomenon of re-running the test cases from the test suite to assure error free modified
software. It guarantees that modifications in the software have not influenced functional
characteristics of software [2].

But, software developers often have time and budget limits in running all the test cases within the
particular constraints. Thus, this approach is quite expensive and time consuming. Therefore, in
order to deal with the problem of time and budget constraint, test case minimization, selection and
prioritization techniques [3] have been used for regression testing for effective cost reduction in
regression testing.

This research work mainly focuses on the test case prioritization. In test case prioritization, the test
cases are ordered priority-wise such as highest priority test case is to be executed first and so on,
based on the objectives such as raise fault detection rate, maximize code coverage. Prioritization
facilitates software developers to reduce the cost and time through its prioritized test cases [4, 5].

Test case prioritization looks for identifying potential ordering of test case execution for regression
testing. The efficiency of the Test case prioritization lies in revealing the faults at the earliest [6].
But, the nature and locality of actual faults are usually not known in advance and thus, test case
prioritization approach have to largely depend on available substitutes for prioritization criteria.
Structural coverage, requirement priority and mutation score have been used in the literature as
criteria for performing prioritization [7, 8, 9]. But, there is no single prioritization criterion whose
results dominate the others.

In testing, multiple variables are considered to produce the efficient number of test cases and to
result in the optimal result. Several numbers of test cases will be formed through exhaustive
testing [10]. But, all the test cases cannot be considered and only a few test cases will be
performing well if implemented in testing the software. This is the main issue considered in this
paper. This problem necessitates obtaining the comparable results using reduced and optimal set of
test cases. After finding the optimal set of test cases, it has to be prioritized based on the statement
coverage and fault coverage in particular time.

The test cases which are prioritized based on the statements covered and faults covered. The
prioritization will be based on certain fitness value [11]. Furthermore, through polynomial
bounded computation, most of the complex multivariable optimization problems [12] cannot be
solved accurately. This formulation induces to develop a novel approach through search based
intelligent selection and prioritization of test case.

Optimization techniques have been effectively used in test case generation and prioritization in
recent years. Although, a number of optimization techniques had been proposed and good results
had been obtained, problems such as complexity in dynamic data sets and higher time
consumption for convergence always exists in the traditional optimization techniques. Thus, still
there is always a hope for betterment of the optimization results. This research work focuses on
using the appropriate optimization technique for the application of test case prioritization which
provides the optimal best results.

Thus, swarm intelligence based technique has been used in this work for test case prioritization. A
number swarm intelligence approaches has been observed to produce significant results in terms of
its accuracy, convergence behavior, time taken etc. A recent and efficient swarm intelligence

212

approach called Bacterial Foraging Optimization Algorithm (BFOA) has been used in this work
which is observed to be better than PSO and GA in terms of convergence, robustness and precision
for getting the optimal test case prioritization results.

LITERATURE SURVEY

A number of research works have been proposed in the literature for test case selection and
prioritization based on optimization process. Some of the well known techniques are discussed
here. The regression testing has been solved using optimization approaches like Genetic
Algorithm (GA) [13], Ant Colony Optimization (ACO) [14], etc.

In [15], Hybrid Genetic Algorithm (HGA) is proposed for improving the quality of test cases. This
improvement can be achieved by analyzing both mutation score and path coverage of each test
case. Effective test cases have been selected by this approach with higher mutation score and path
coverage from a near infinite number of test cases. Hence, the final test set size is reduced which
in turn reduces the total time needed in testing activity. In the proposed framework, two
improvement heuristics namely RemoveTop and LocalBest are introduced to achieve near global
optimal solution.

Yu-Chi Huang et al has presented a cost cognizant test case prioritization approach with the
application of previous data and GA [16]. But the main drawback of this approach is that it does
not consider the test cases similarity. Ciyong Chen et al presented a novel technique called EPDG-
GA which uses the Edge Partitions Dominator Graph (EPDG) and Genetic Algorithm (GA) for
branch coverage testing [17].

In [18], a strategy for GUI functional testing using Simplified Swarm Optimization (SSO) is
proposed. The SSO is used to generate an optimized test suite with the help of Event-Interaction
Graph (EIG). The proposed strategy also manages and repairs the test suites by deleting the
unnecessary event sequences that are not applicable. The generation algorithm based on SSO has
proved its effectiveness by evaluating it against other algorithms. In addition, the strategy is
applied on a case study and proved its applicability in reality.

Due to the drawbacks of the above said optimization algorithms, an efficient optimization
algorithm which provides best convergence rate, less complexity, higher accuracy is required to
solve the test case prioritization problem. Hence this research work uses Bacterial Foraging
Optimization Algorithm (BFOA) to attain the optimal results.

PROPOSED METHODOLOGY

This research work uses an efficient Bacterial Foraging Optimization Algorithm (BFOA) for the
formulation of test case prioritization and minimization. In this proposed approach, each test case
would denote a population source and the aim of the approach would be to determine best sources
i.e. test cases with maximum statement coverage and maximum fault coverage. The main aim of
the proposed approach is to determine the optimal number of test cases with higher statement
coverage and fault coverage. In order to handle this issue, BFOA approach gather the test cases
and then calibrate the fitness function which is in-turn used to identify the optimal test cases with
maximum statement coverage and fault coverage.

213

On choosing the population randomly from a given issue, fitness function is assigned based on the
position of the BFOA algorithm. In this process of test case prioritization and minimization, the
position of foraging behaviour of E.coli bacteria is considered as number of statements and faults
covered by those bacteria. The regression testing mainly focuses on total statement and fault
covered in less time. The stopping criterion is to be decide, on the basis of which BFOA
optimization algorithm will end.

This research work proposes that the optimized test suite produced by the algorithm will comprises
of all possible statements and faults in the program. The program is given to the Test Case
optimization tool. BFOA is applied to produce an Optimal Test suite by generating optimal test
data which would have higher statement and path coverage. In BFOA, group foraging strategy of a
swarm of E.coli bacteria is regarded as search agent for the execution state of the Software Under
Test (SUT) and also initializes the test cases by defining the parameter with the initial test data
with the aid of corresponding partitioning and boundary value analysis [19]. The search agent
computes the fitness based on the bacterium of each test node by estimating the statement and fault
coverage. This process is repeated until an executable state of SUT is determined. The BFOA
optimization can be distributed in the objective function definite space. In order to find the
minimum of J(θ)where θ ∈ ℜ (i.e. θ is a p-dimensional vector of real numbers), and there areno
measurements or an analytical description of the gradient ∇J(θ). BFOA mimics the four principal
mechanisms observed in a real bacterial system: chemotaxis, swarming, reproduction, and
elimination-dispersal to solve this non-gradient optimization problem. A virtual bacterium is
actually one trial solution (may be called a search-agent) that moves on the functional surface to
locate the global optimum. Ultimately, a number of bacteria returns collects at the multiple optima
of the given objective function. If the condition is not met, then the new set of test data is formed
from the abandoned repository and again the same process is repeated.

In order to implement any algorithm, the algorithm must be converted into the pseudo code before
programmatically developing an application is as follows.

Bacterial Forging Optimization
Bacterial foraging optimization algorithm (BFOA) is an effective global optimization algorithm
for solving distributed optimization problems. Bacteria Foraging Optimization Algorithm (BFOA),
proposed in [20], is a new comer to the family of nature-inspired optimization algorithms. BFOA
is based on the social foraging behavior of Escherichia coli. BFOA is observed to be very efficient
in handling real-world optimization problems in various engineering domains. The fundamental
biological concept in the foraging strategy of E.coli is followed and used for the optimization
algorithm. Bacteria search for nutrients in a manner to maximize energy obtained per unit time.
Individual bacterium also communicates with others by sending signals. A bacterium takes
foraging decisions after considering two previous factors.

The main notion of BFOA is based on the fact that natural selection removes animal with
ineffective foraging strategies and favor those having efficient foraging approaches. After
particular number of iterations, poor foraging approaches are either eliminated. The foraging
strategy of BFOA is governed by four processes, namely, chemotaxis, swarming, reproduction,
and elimination and dispersal.

Since its inception, BFOA has drawn the attention of researchers from diverse fields of knowledge
especially due to its biological motivation and graceful structure. Researchers are trying to

214

hybridize BFOA with different other algorithms in order to explore its local and global search
properties separately. It has already been applied to many real world problems and proved its
effectiveness over many variants of GA and PSO. Mathematical modeling, adaptation, and
modification of the algorithm might be a major part of the research on BFOA in future.

Bacteria Foraging Optimization Working Principle
During foraging of the real bacteria, locomotion is achieved by a set of tensile flagella. Flagella
help an E.coli bacterium to tumble or swim, which are two basic operations performed by a
bacterium at the time of foraging [21]. When they rotate the flagella in the clockwise direction,
each flagellum pulls on the cell. That results in the moving of flagella independently and finally
the bacterium tumbles with lesser number of tumbling whereas in a harmful place it tumbles
frequently to find a nutrient gradient. Moving the flagella in the counterclockwise direction helps
the bacterium to swim at a very fast rate. In the above-mentioned algorithm the bacteria undergoes
chemotaxis, where they like to move towards a nutrient gradient and avoid noxious environment.
Generally the bacteria move for a longer distance in a friendly environment.

When they get food in sufficient, they are increased in length and in presence of suitable
temperature they break in the middle to from an exact replica of itself. This phenomenon inspired
Passino to introduce an event of reproduction in BFOA. Due to the occurrence of environmental
changes, the chemotactic progress may be destroyed and a group of bacteria may move to some
other places or some other may be introduced in the swarm of concern. This constitutes the event
of elimination-dispersal in the real bacterial population, where all the bacteria in a region are killed
or a group is dispersed into a new part of the environment.

In order to find the minimum of J(θ) where θ ∈ ℜ (i.e. θ is a p-dimensional vector of real
numbers), and there areno measurements or an analytical description of the gradient ∇J(θ). BFOA
mimics the four principal mechanisms observed in a real bacterial system: chemotaxis, swarming,
reproduction, and elimination-dispersal to solve this non-gradient optimization problem. A virtual
bacterium is actually one trial solution (may be called a search-agent) that moves on the functional
surface to locate the global optimum.

A chemotactic step is defined to be a tumble followed by a tumble or a tumble followed by a run.
Let j be the index for the chemotactic step. Let k be the index for the reproduction step. Let l	be the
index of the elimination-dispersal event. Also let

푝: Dimension of the search space,
푆: Total number of bacteria in the population,
푁푐 ∶ The number of chemotactic steps,
푁푠: The swimming length.
푁푟푒 ∶ The number of reproduction steps,
푁푒푑 ∶ The number of elimination-dispersal events,
푃푒푑 ∶ Elimination-dispersal probability,
퐶	(푖): The size of the step taken in the random direction specified by the tumble.

Let P(j, k, l) = θ (j, k, l) i = 1,2, . . . , S}	represent the position of each member in the population
of the S bacteria at the j-th chemotactic step, k-th reproduction step, and l-th elimination-dispersal
event. Here, let J	(i, j, k, l) denote the cost at the location of the i-th bacterium θ 	(j, k, l) ∈ ℜ
(sometimes, the indices are dropped and refer to the i-th bacterium position as i q).

215

It is to be observed that J isreferred as a “cost” (using terminology from optimization theory) and
as being a nutrient surface (in reference to the biological connections). For actual bacterial
populations, S can be very large (e.g. S	 = 109), but p	 = 	3 . In the present work, smaller
population sizes are used and moreover, it is kept fixed. BFOA, however, allows p	 > 	3 so that,
the method can be applied to higher dimensional optimization problems. The four essential steps in
BFO are discussed below.

Chemotaxis: This process simulates the movement of an E.coli cell through swimming and
tumbling via flagella. Biologically an E.coli bacterium can move in two different ways. It can
swim for a period of time in the same direction or it may tumble, and alternate between these two
modes of operation for the entire lifetime. Suppose θ 	(j, k, l) represents ith bacterium at jth
chemotactic, kth reproductive and lth elimination-dispersal step. C(i) is the size of the step taken in
the random direction specified by the tumble (run length unit). Then in computational chemotaxis
the movement of the bacterium may be represented by

휃 (푗 + 1, 푘, 푙) = 휃 (푗,푘, 푙) + 퐶(푖)
∆(푖)

∆ (푖)∆(푖)
 (1)

Where ∆ indicates a vector in the random direction whose elements lie
in [-1, 1].

Swarming: An interesting group behavior has been observed for several motile species of bacteria
including E.coli and S. typhimurium, where intricate and stable spatio-temporal patterns (swarms)
are formed in semisolid nutrient medium. A group of E.coli cells arrange themselves in a traveling
ring by moving up the nutrient gradient when placed amidst a semisolid matrix with a single
nutrient chemo-effecter. The cells when stimulated by a high level of succinate, release an
attractant aspertate, which helps them to aggregate into groups and thus move as concentric
patterns of swarms with high bacterial density. The cell-to-cell signaling in E. coli swarm may be
represented by the following function.

퐽 휃,푃(푗, 푘, 푙) = 퐽 휃, 휃 , (푗, 푘, 푙) (2)

[−푑 exp	(−푤 (휃 − 휃))]

+ ℎ exp	(−푤 (휃 − 휃)

(3)

where J (θ	, P(j, k, l))	is the objective function value to be added to the actual objective to present
a time varying objective function, S is the total number of bacteria, p is the number of variables to
be optimized, which are present in each bacterium and θ = 	 θ , θ , … . , θ is a point in the p-
dimensional search domain. d 	, w 	, h 	, w 	are different coefficients
that should be chosen properly.

216

Reproduction: The least healthy bacteria eventually die while each of the healthier bacteria (those
yielding lower value of the objective function) asexually split into two bacteria, which are then
placed in the same location. This keeps the swarm size constant.

Elimination and Dispersal: Gradual or sudden changes in the local environment where a bacterium
population lives may occur due to various reasons e.g. a significant local rise of temperature may
kill a group of bacteria that are currently in a region with a high concentration of nutrient
gradients. Events can take place in such a fashion that all the bacteria in a region are killed or a
group is dispersed into a new location. To simulate this phenomenon in BFOA some bacteria are
liquidated at random with a very small probability while the new replacements are randomly
initialized over the search space.

The pseudo-code of the complete algorithm is presented below:
The BF algorithm [22] is modified so as to speed up the convergence. The modifications are
discussed below.

1. In [22], the average value of all the chemotactic
cost functions is taken to decide the health of specific bacteria in that generation, before
sorting is performed for reproduction. In this research work, instead of the average value,
the minimum value of all the chemotactic cost functions is maintained for deciding the
significance of the bacteria’s health. This speeds up the convergence, as in the average
scheme, it may not retain the fittest bacterium for the subsequent generation. On the other
side, the global minimum bacterium among all chemotactic stages passes onto the
following stage.

2. For swarming, the distances of all the bacteria in a new chemotactic phase is computed
from the global optimum bacterium until that point and not the distances of each
bacterium from the rest of the others, as given in [23].

Proposed BFO Algorithm for Test case Minimization and prioritization
The following variables are initialized.

 Number of bacteria (S) to be used in the search.
 Number of parameters (p) to be optimized.
 Swimming length.
 The number of iterations in a chemotactic loop.
 The number of reproduction.
 The number of elimination and dispersal events.
 The probability of elimination and dispersal.

This section models the bacterial population chemotaxis, swarming, reproduction, and elimination
and dispersal. (initially, j = k = l = 0). For the algorithm updating, θ automatically results in
updating of “p”.
Elimination-dispersal loop: l = l + 1, Reproduction loop: k = k + 1, Chemotaxis loop: j = j + 1

a) For i = 1,2, … S, compute cost function value for each bacterium i as follows
 Compute value of cost function J(I,j,k,l). Let

J (i, j, k, l) = J(i, j, k, l) + J θ 	(j, k, l , P(j, k, l)). P(j, k, l)		is the location of bacterium
corresponding to the global minimum cost function out of all the generations and
chemotactic loops until that point

217

 Let J = J (i, j, k, l) to save this value as a better cost may be found via a run.
 End of For Loop

b) For i = 1, 2, … , S,	take the tumbling/swimming decision
 Tumble: Generate a random vector
 Move: let θ (j + 1, k + l) = θ (j, k, l) + C(i) ∆()

∆ ()∆()
 (4)

Fixed step size in the direction of tumble for bacterium i is considered.
 Consider J(i,j+1,k,l) and then let J (i, j + 1, k, l) = J(i, j + 1, k, l) + j (θ (j +

1, k, l), P(j + 1, k, l))
 Swim

i) Let m	 = 0; (counter for swim length)
ii) While m < N ((have not climbed down too long)

 Let m = m + 1
 If J (i, j + 1, k, l) < J 	(if doing better), let J 	 = J (i, j + 1, k, l) and

θ (j + 1, k + l) = θ (j, k, l) + C(i) ∆()

∆ ()∆()
 (5)

Use this θ (j + 1, k + l) to compare the new J(i, j + 1, k, l)
 Else let m = 	N . This is the end of the “While” statement

c) Go to next bacterium (i + 1) if i	 ≠ S (i.e., go to “b”) to process the next bacterium.
4) if j < N , go to step 3. In this case, continue chemotaxis since the life of the bacteria is not over.
5) Reproduction

a) For the given k and	l and for each i	 = 1, 2, … S, let J = min
j ∈ {1 … N {J (i, j, k, l)} be the

health of the J (Higher cost means lower health).
b) The S = S/2 bacteria with highest J values die and other S bacteria with the best value

split (and the copies that are made are placed at the same location as their parent)
6) If k < N , go to ; in this case, the number of specified reproduction steps is not been reached
and thus, the next generation in the chemotactic loop is initiated.
7) Elimination-dispersal: For i = 1,2, … S, with probability P , removes and disperses each
bacterium (this keeps the number of bacteria in the population constant). For this process, if one
eliminates a bacterium, it is simply dispersed to a random location on the optimization domain.
The Proposed BFOA Algorithm Flow Chart is shown in figure 1.

Problem Formulation
The test case prioritization technique’s basic evaluation is to have maximum number of faults
covered and statement covered with minimum number of test cases required. In this approach, the
execution time of every test case is also analyzed. The fault measuring technique used is fault
coverage based testing technique. In this example, there are test cases forming Test Suite (TS) =
{T1, T2, T3, T4, T5, T6, T7, T8} and the faults covered by those test cases are represented as
Faults Covered (FC) = {F1, F2, F3, F4, F5, F6}. Similarly the statements covered by the test cases
are denoted as Statements Covered (SC) = {S1, S2, S3, S4, S5 }.

Table 1 and 2 clearly shows the Test cases with the faults and statements covered in particular
execution time.

218

Figure 1: Proposed BFOA Algorithm Flow Chart

Table 1. Test Case With Number Of Faults Covered And Execution Time Taken
Test
Case/Faults

F1 F2 F3 F4 F5 F6 No. of
Faults
Covered

Execution
Time

T1 x x x x 4 9
T2 x x x x 4 9
T3 x x x 3 10
T4 x x x x 4 14
T5 x x x x x 5 10
T6 x x x 3 9
T7 x x x x 4 8
T8 x x x 3 5

PERFORMANCE EVALUATION

This section compares the performance of the proposed BFOA approach with the other
optimization approaches such as PSO, ABC and PSABC in terms of percentage of statement
coverage and fault coverage. It is clearly observed from the figure 2 that the proposed test case
prioritization and minimization approach using BFOA provides better statement coverage when
compared with ABC, PSO and PSABC optimization approaches.

Initialize the test cases with
defining a parameter

Elimination of dispersal loop

Chemotaxis loop

Reproduction loop

If the number
of chemotactic
steps range<
cost function

Go to Chemotaxis loop, continue
chemotaxis since the life of the

bacteria is not over

Reproduction loop

Optimal prioritized test cases If Reproduction
loop< The number of

reproduction steps

Yes

No

No Yes

219

Table 2. Test Cases With Number Of Statements Covered And Execution Time Taken
Test
Case/Faults

S1 S2 S3 S4 S5 No. of
Faults
Covered

Execution
Time

T1 x x x 3 8
T2 x x x x 4 5
T3 x x x 3 9
T4 x x x 3 6
T5 x x x x 4 11
T6 x x 2 5
T7 x x x x 4 7
T8 x x 2 4

 Figure 2: No. of Cycles Vs Statement Coverage (%) Comparison

Figure 3 shows the fault coverage comparison in percentage for the approaches such as PSO,
ABC, PSABC and BFOA. The proposed approach outperforms the other two approaches in terms
of the fault coverage.

Figure 4 shows the graphical representation of No of runs vs. Paths. The proposed BFO algorithm
provides better performance in terms of runs.

Figure 5 shows the graphical representation of No of cycles vs. percentage covered. The proposed
BFO algorithm provides better performance in terms of path coverage.

It can be observed from the graphical representation that the test cases are prioritized based on
higher statement coverage and fault coverage are selected as the optimal test cases.

APFS Metric
This performance of the proposed BFOA based Test Case Prioritization has been represented
through APFD representation. The APFD Percentage as calculated by concerning test suite
selected from above program solution.

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14

St
at

em
en

t C
ov

er
ag

e
in

Pe

rc
en

ta
ge

No of Cycles

PSO
ABC
PSABC
BFOA

220

Figure 3: No. of Cycles Vs Fault Coverage (%) Comparison

Figure 4: No of runs vs. Paths

Figure 5: No of cycles vs. percentage covered

0
10
20
30
40
50
60
70
80

0 2 4 6 8 10 12 14

Fa
ul

t
C

ov
er

ag
e

in

Pe
rc

en
ta

ge

No of Cycles

PSO
ABC
PSABC
BFOA

0

5

10

15

20

0 2 4 6 8 10 12

N
o

of
 R

un
s

No of Paths

BFOA

0

20

40

60

80

100

120

0 10 20 30 40 50 60

Pe
rc

en
ta

ge
 C

ov
er

ed

No of Cycles

BFOA

221

To quantify the goal of increasing a subset of the test suite's rate of fault detection, i use a metric
called APFD that measures the average rate of fault detection per percentage of test suite
execution. The APFD is calculated by taking the weighted average of the number of faults
detected during the run of the test suite. APFD can be calculated using a notation:

퐴푃퐹퐷 = 1− ⋯ + (6)

 where T -> The test suite under evaluation
m -> the number of faults contained in the program under test P
 n -> The total number of test cases and
TFi -> The position of the first test in T that exposes fault i.
So as the formula for APFD shows that calculating APFD is only possible when prior knowledge
of faults is available. APFD calculations therefore are only used for evaluation.

CONCLUSION

Test case Prioritization has become an active area of research in the field of software testing.
Innumerable research works have already been proposed in the literature for Test Case
prioritization. Regression Testing is a time consuming and inestimable process and the main
objective of a good Test plan would be attaining complete test coverage with minimum cost and
time. A unique test case prioritization method is proposed here, considering the multiobjective
criteria. The objectives considered in this research work are statement coverage and fault coverage
in minimum execution time. This research work substantiates the proposed methodology by
attaining test case prioritization whose results are extensively implemented and tested using
BFOA. The performance of the approach is compared with other optimization approaches of Test
Cases using Swarm Intelligence Algorithms, primarily with the Glowworm Swarm Algorithm
(GSO). It is observed from the experimental results that the proposed BFOA based test case
prioritization approach provides better results when compared with other methods. Further
research work may focus on analyzing convergence rates by applying variants of the
aforementioned algorithms and developing novel algorithms with higher efficacy.

REFERENCES

Yang, M.C.K. and Chao, Anne, “Reliability-estimation and stopping-rules for software testing,

based on repeated appearances of bugs”, IEEE Transactions on Reliability, Volume: 44, Issue:
2, Page(s): 315- 321, 1995.

Bharti Suri and Shweta Singhal, “Implementing Ant Colony Optimization for Test Case Selection
and Prioritization”, International Journal of Computer Science and Engineering 0975-3397
11/2011; 3(5):1924-1932.

Y. Singh, A. Kaur. and B. Suri: “A New Technique for Version – Specific Test Case Selection and
Prioritization for Regression Testing”. Journal of Computer Society of India, 36(4), pp. 23-32.,
2006.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test Case Prioritization: An Empirical
Study”, Proceedings of the International Conference on Software Maintenance, pages 179-188,
September 1999

G. Rothermel, R. J. Untch, and C. Chu. “Prioritizing Test Cases for Regression Testing”, IEEE
Trans. on Softw. Eng., vol-27(10): pages:929-948, 2001.

222

Shin Yoo, Mark Harman, Paolo Tonella and Angelo Susi, “Clustering Test Cases to Achieve
Effective & Scalable Prioritisation Incorporating Expert Knowledge”, ACM, ISSTA’09, 2009.

H. Do and G. Rothermel. On the use of mutation faults in empirical assessments of test case
prioritization techniques. IEEE Transactions on Software Engineering, 32(9):733–752, 2006.

S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Prioritizing test cases for regression testing.
In Proceedings of the 2nd International Symposium on Software Testing and Analysis, pages
102–112, Portland, USA, 2000.

H. Srikanth, L. Williams, and J. Osborne. System test case prioritization of new and regression
test cases. In Proceedings of International Symposium on Empirical Software Engineering,
pages 64–73, November 2005.

Sommerville: Software Engineering, 8th edn., ch.1 (27-42), 11(265-288), 23(561-589). Pearson,
London (2007)

Basturk, B., Karaboga, D.: A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm. In: Proceedings of the IEEE Swarm
Intelligence Symposium, pp. 459–471. IEEE, Indianapolis (2006).

KDeb: Multi-Objective optimization using Evolutionary Algorithms, 1st edn., ch.4 (140). John
Wiley & Sons, UK (2001)

A. Kamble, “Incremental Clustering in Data Mining using Genetic Algorithm”, International
Journal of Computer Theory and Engineering, 2(3), pp.: 1793-8201, June 2010.

Hyeon-Cheol Jo ; Kwang-Seon Yoo ; Jae-Yong Park ; Seog-Young Han, “Dynamic topology
optimization based on ant colony optimization”, Eighth International Conference on Natural
Computation (ICNC), 2012

Dharmalingam Jeya Mala, Elizabeth Ruby, Vasudev Mohan, “A HYBRID TEST
OPTIMIZATION FRAMEWORK –COUPLING GENETIC ALGORITHM WITH LOCAL
SEARCH TECHNIQUE”, Computing and Informatics, Vol. 29, 2010, 133–164.

Yu-Chi Huang, Chin-Yu Huang, Jun-Ru Chang and TsanYuan Chen “Design and Analysis of
Cost-Cognizant Test Case Prioritization Using Genetic Algorithm with Test History”, IEEE
34th Annual Computer Software and Applications Conference 2010.

Ciyong Chen , Xiaofeng Xu , Yan Chen , Xiaochao Li and Donghui Guo “A New Method of Test
Data Generation for Branch Coverage in Software Testing Based on EPDG and Genetic
Algorithm”, 3rd International Conference on Anti-counterfeiting, Security, and Identification in
Communication, 2009.

Dr. Arvinder Kaur and Divya Bhatt, “Hybrid Particle Swarm Optimization for Regression
Testing”, International Journal on Computer Science and Engineering (IJCSE), 2011.

Reid, S.C.: An empirical analysis of equivalence partitioning, boundary value analysis and random
testing. In: Software Metrics Symposium, Proceedings, Fourth International, Albuquerque, NM,
USA, pp. 64–73 (1997)

Passino, KM 2002, ‘Biomimicry of bacterial foraging for distributed optimization and control’,
IEEE Control Systems Magazine, vol.22, pp. 52–67.

Hanumantha, RG & Bhanu, KK 2012, ‘Power Quality improvement of grid interconnected 3phase
4 wire distribution System’, National Conference on Electrical Sciences (NCES-12), pp.166-
171.

Mishra, S, ‘A hybrid least square-fuzzy bacteria foraging strategy for harmonic estimation’, IEEE
Trans. Evol. Comput.,vol.9,no.1,pp. 61–73,2005.

Tripathy, M & Mishra, S 2007, ‘Bacteria Foraging-Based Solution to Optimize Both Real Power
Loss and Voltage Stability Limit’, IEEE Transactions on Power Systems, vol. 22, no. 1.

